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[1] Geostatistics has become the dominant tool for probabilistic estimation of properties
of heterogeneous formations at points where data are not available. Ordinary kriging, the
starting point in the development of other geostatistical techniques, has a number of
serious limitations, chief among which is the intrinsic hypothesis of the (second-order)
stationarity of the underlying random field. Attempts to overcome this limitation have led
to the development of ever more complex flavors of kriging. We pursue an opposite
strategy that consists of finding the simplest possible technique that is adequate for the
task of facies delineation. Guided by the principle of parsimony, we identify nearest-
neighbor classification (NNC) as a viable alternative to geostatistics among deterministic
techniques. We demonstrate that when used for the purpose of facies delineation, NNC,
which has no fitting parameters and operational assumptions, outperforms indicator
kriging, which has several parameters.
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1. Introduction

[2] Our knowledge of the spatial distribution of the
physical properties of geologic formations is uncertain
because of ubiquitous heterogeneity and the sparsity of
data. Consequently, one is often faced with a problem of
using measurements Ki = K(xi) of a parameter K(x) sampled
at locations xi (i 2 {1,. . ., N}) to estimate its values at
locations x, where data are not available. This task is
routinely accomplished by means of kriging, which is
defined by Olea [1991, p. 14] as ‘‘a collection of general-
ized linear regression techniques for minimizing an estima-
tion variance defined from a prior model for a covariance’’
[Deutsch and Journel, 1992].
[3] In other words, kriging computes an estimate K of a

true value of K as a weighted average of the data,

K ¼
XN
i¼1

wiKi;
XN
i¼1

wi ¼ 1; ð1Þ

where the weights {wi}i=1
N are determined by minimizing the

error variance

s2
K ¼ 1

N

XN
i¼1

K� Kið Þ2: ð2Þ

Different ways to approach this minimization problem give
rise to different flavors of kriging (e.g., simple kriging,

ordinary kriging, etc), but they all share the common
philosophy: a parameter K is treated as a random field. This
step implicitly invokes the ergodicity hypothesis to
substitute the sample spatial statistics, which can be
calculated, for the ensemble statistics, which are actually
required. Ergodicity cannot be proved and requires a
number of modeling assumptions [Rubin, 2003, section
2.7, and references therein].
[4] On technical level, kriging allows one to estimate

only the mean and variance of a random field K, while a
variety of applications [e.g., Isaaks and Srivastava 1990,
chapter 8] demand the knowledge of its full distribution.
An assumption of subsurface parameters, e.g., hydraulic
conductivity, having multi-Gaussian distributions or being
nonlinear maps thereof would resolve this limitation, since
such distributions are completely specified by their first two
moments, i.e., by their means and variances. Unfortunately,
the experimental evidence leaves little doubt that this
assumption is often inadequate [e.g., Gómez-Hernández
and Wen, 1998; Winter et al., 2003, and references therein].
[5] This inadequacy is commonly addressed by means of

indicator kriging (IK). The approach is based on a mapping
of parameter K onto an indicator function [e.g., Isaaks and
Srivastava 1990, p. 423]

I k; xð Þ ¼
1 K xð Þ � k

0 otherwise;

8<
: ð3Þ

so that FK(k), the cumulative distribution function of K,
estimated from data {Ki}i=1

N mapped onto {Ii = I(xi)}i=1
N , can

be obtained as

FK kð Þ ¼ 1

N

XN
i¼1

Ii kð Þ: ð4Þ

An estimate I of a true value of I at locations where data are
not available is obtained by applying the kriging procedure
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(1)–(2) to {Ii = I(xi)}i=1
N . If one can identify the threshold

value k = k? of K that distinguishes one geologic facies from
another, then IK can be used as a tool for facies delineation
[Ritzi et al., 1994; Guadagnini et al., 2004].
[6] IK shares some of the key limitations of other kriging

techniques, chief among which is the intrinsic hypothesis of
kriging, i.e., an assumption of the (second-order) stationar-
ity of the underlying random field K. It requires, among
other things, that its mean hKi be constant in space and its
two-point covariance function CK depend on the separation
distance between two points rather than on their locations.
Some of the limitations that are peculiar to IK, including the
so-called order relation problems, are discussed by Glacken
and Blackney [1998], Goovaerts [1999], and Emery and
Ortiz [2004].
[7] When faced with these challenges, the standard

modus operandi has been to increase the complexity of
geostatistical tools. For example, the assumption of statio-
narity has been relaxed by replacing it with the notion of
local stationarity, and by replacing ordinary kriging with
universal kriging. The latter, in turn, can yield biased
estimates and can have the serious operational difficulties
identified by Matheron [Cressie, 1986]. To overcome these,
Cressie [1986] proposed median polish kriging. Likewise,
potential pitfalls of IK, including a theoretical possibility of
obtaining negative probability estimates and probability
distributions that do not sum up to 1 (the order relation
problems), have led to recent calls to either substantially
modify IK [Emery and Ortiz, 2004] or abolish it altogether
in favor of more conceptually and computationally complex
techniques, such as Bayesian maximum entropy [Christakos
and Li, 1998; Bogaert, 2002].
[8] Are there simpler alternatives to IK? Tartakovsky and

Wohlberg [2004] and Wohlberg et al. [2006] provide one
such alternative, support vector machines, that slightly out-
performs IK, while requiring fewer modeling assumptions
and data points. In this study, guided by the principle of
parsimony, we search for a viable alternative to geostatistics
among deterministic techniques. In section 2 we briefly
review several deterministic methods of data analysis, the
simplest of which, nearest-neighbor classification (NNC), is
described in detail in section 3. To test its performance, we
use NNC to reconstruct boundaries between two materials
in synthetically generated porous media (section 4). This
section also contains a comparison of the NNC performance
with that of IK. Section 5 provides some concluding
remarks.

2. Deterministic Analyses of Data

[9] Deterministic approaches to the analysis of spatial
data include polygonal methods, various flavors of triangu-
lation, inverse distance methods, splines, nonparametric
regressions, etc. Such methods were widely used for sub-
surface characterization before the advent of geostatistics in
the early 60s, which was spearheaded by G. Matheron [e.g.,
Matheron, 1963]. In fact, today it might come as a surprise
that the appearance of geostatistics ‘‘has been countered by
widespread negative reactions ranging from mild to total
skepticism’’ (Laslett [1994, p. 391]; see also references
therein). Since then, a plethora of studies have aimed to
reestablish deterministic methods as viable alternatives to
geostatistics.

[10] For example, Yakowitz and Szidarovsky [1985] found
nonparametric regression to be more robust and accurate
than kriging, when used on nonstationary fields with trends.
Laslett [1994] provided a detailed review of the use of
splines as a deterministic alternative to kriging and con-
ducted a systematic comparison between the two. Gotway et
al. [1996] concluded that the relative performances of an
inverse distance method and ordinary kriging depend on the
coefficient of variation of a field being reconstructed. Reed
et al. [2004] compared the performance of inverse distance
and nonlinear least squares inverse distance methods with
several kriging techniques. They found that both determin-
istic approaches are highly competitive vis à vis ordinary
kriging, but underperform relative to more complicated
kriging approaches, such as quantile kriging.
[11] These and other similar studies point to an emerging

consensus: deterministic interpolation schemes provide
viable alternatives to geostatistics because of their simpli-
city and the ease of implementation. The main, and often
crucial, drawback of the deterministic approaches is their
inability to quantify predictive uncertainty. In this study, we
circumvent this limitation by applying a deterministic
approach to data for the indicator function (3) obtained
from an analysis of the corresponding parameter data. We
rely on the principle of parsimony to select the deterministic
approach. This leads us to nearest-neighbor classification
(NNC), a class of classification methods that requires the
smallest number of assumptions (none), is simplest both
conceptually and in terms of implementation, and provides
a performance that is highly competitive with that of IK. As
we discuss in the following section, the only requirement
for NCC to be workable is that the field to be reconstructed
possesses some spatial correlation or smoothness, so that the
class of a data point is relevant in determining the class of a
neighboring point. This requirement is, of course, essential
for any reconstruction effort, since no amount of data would
be sufficient to estimate parameters of an uncorrelated
(white noise) field.

3. Nearest-Neighbor Classification

[12] Geostatistics revolves around the four key questions
‘‘Are there enough nearby samples? Are there too many
samples? Are there nearby samples that are redundant? Are
the nearby samples relevant?’’ [Isaaks and Srivastava,
1990, p. 338]. The nearest-neighbor classification (NNC)
we propose provides a radical answer to these questions:
Only one sample located closest to the point of interest is
enough for classification purposes!
[13] Nearest-neighbor methods form a large class of

algorithms, many of which are described by Dixon [2002]
and a few have been used in subsurface applications. This
can cause a considerable confusion, since the term is often
applied to vastly different computational schemes. For
example,Wilkinson et al. [1983] proposed a nearest-neighbor
approach that requires data trends to be locally quadratic.
This and other limitations were deemed by Cressie [1986] to
be overly restrictive for subsurface applications.
[14] There are practically no similarities, except for the

name, between the Wilkinson et al. [1983] method and the
NNC we propose. Our approach consists of the following
two steps. First, we assign the indicator to each data point.
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Then we employ the k-nearest-neighbor classification
[Hastie et al., 2001, section 13.3], in which the classifica-
tion of a test point is determined by majority vote amongst
the k nearest-neighbor points in the training set. Here, we
consider the simplest of these classifiers, with k = 1, for
which the classification of each point in the domain is
determined by finding the nearest training point, and assign-
ing the known class of that point. Given a set of training
data points {xi}i=1

N with corresponding known indicator
function values I(xi), the NNC classification for an arbitrary
point x in the domain is computed as follows:
[15] 1. Define j as the index of the training data point,

from the set {xi}i=1
N , which is closest to query point x; that

is, j = argmini jjx � xi jj2.
[16] 2. Assign the indicator function value of training data

point xj (i.e., I(xj)) as the indicator function value of query
point x.This classification is simple to compute, and has no
free parameters to estimate.

4. Computational Example

[17] To test the NNC classification described above, we
reconstruct, from a few data points randomly selected
according to a uniform distribution, the boundaries between
heterogeneous geologic facies in two synthetic porous
media shown in Figures 1 and 2. These examples idealize
two commonly found geological settings. Figure 1 mimics a
planar view of a subsurface environment in which a highly
conductive material has been deposited on top of a less
conductive basement and is laterally constrained by a less
permeable rock. Figure 2 represents a vertical cross section
of a high-conductivity aquifer with a narrow and elongated
inclusion of a low-conductivity material. Both the hydraulic
conductivities of each material and the internal boundaries
between materials are generated randomly (see Wohlberg et
al. [2006] for a detailed description of the generation

procedure) to avoid any bias in favor of a particular
reconstruction method. Indicator fields I corresponding to
data in Figures 1 and 2 were obtained by setting a threshold
value of 4.0 for example 1, and 3.0 for example 2, as
described by Wohlberg et al. [2006].
[18] We used NNC to reconstruct the boundary between

the geologic facies in Figures 1 and 2 from data sets
corresponding to various sampling densities. The number
of data points ranged from 10 (a sampling density of 0.28%)
to 110 (a sampling density of 3.06%). For each sampling
density, an ensemble of 20 randomly generated realizations
of the sample locations was constructed to reduce the
influence of ‘‘lucky’’ and ‘‘unlucky’’ measurement locations.
Classification errors for each sampling density were com-
puted as the fraction of misclassified grid points averaged
over the classification results for each of the 20 realizations
at that sampling density.
[19] The results of these simulations are presented in

Figures 3 and 4, in comparison with the geostatistical
approach of Ritzi et al. [1994] and the support vector
machine (SVM) approach of Wohlberg et al. [2006]. These
latter methods are described briefly in Appendix A.
[20] One can see that NNC outperforms IK, slightly in the

first example and significantly in the second. The SVM
slightly outperforms NNC in the first example but NNC
outperforms it in the second. As the number of samples
decreases, the use of IK becomes questionable, while both
the SVM and NNC remain functional, albeit at the cost of
the exponentially increasing fractional error.
[21] Moreover, the accuracy of NNC increases exponen-

tially with the sampling density (the number of measure-
ments), whereas the accuracy of IK might either increase
(Figure 3) or decrease (Figure 4) depending on the medium
being reconstructed. This is because the blind selection of
measurement locations fails to provide an accurate descrip-
tion of the localized and highly anisotropic low-conductiv-

Figure 1. Synthetic example 1: values of ln K ranging
between �2.04 and 9.89 on a 60 � 60 grid.

Figure 2. Synthetic example 2: values of ln K ranging
between �3.00 and 10.44 on a 60 � 60 grid.
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ity geological structure in Figure 2. The advantage of NNC
becomes more striking if one recalls that, unlike IK and
SVM, it has no fitting parameters.

5. Conclusions

[22] We explored the potential of a simple deterministic
approach, nearest-neighbor classification (NNC), to recon-
struct geologic facies from a sparse data set containing
measurements of material properties. The comparison of its
performance with that of indicator kriging (IK) leads to the
following major conclusions.
[23] 1. NNC outperforms IK in terms of the reconstruc-

tion error.
[24] 2. NNC has lower data requirements than IK, for

which too few data points render the construction of a
variogram meaningless.
[25] 3. Unlike IK, NNC has no fitting parameters.
[26] These findings, combined with the principle of

parsimony, strongly suggest that nearest-neighbor classifi-
cation is a viable alternative to geostatistics.
[27] It is important to recognize that our use of NNC is

limited to the problem of facies delineation. There are other
applications, e.g., spatial interpolation of parameter values,
where NNC might or might not outperform geostatistics.
Their analysis lies outside the scope of the present study and
is a subject of our ongoing investigation.

Appendix A: Alternative Approaches

[28] The NNC classification algorithm is compared with
two alternatives, the geostatistical approach of Ritzi et al.
[1994] and the support vector machine approach ofWohlberg
et al. [2006], each of which is discussed briefly below.

A1. Geostatistical Approach

[29] The Ritzi et al. [1994] algorithm for facies recon-
struction from indicator data is as follows. First, ordinary
kriging [Deutsch and Journel, 1992] is used to construct a
map of the ensemble average of the indicator function
hI(x)i from the data {I(xi)}i = 1

N . The ensemble mean I(x)
is the probability that a point x lies in Material 1, hI(x)i =
P[x 2 M1]. Then a boundary between the two materials is
defined as an isoline P[x 2 M1] = c, where c is a number of

data points in Material 1 (or 2) relative to the total number
of data points, after accounting for data clustering.
[30] In some cases, this value of c does not guarantee that

the kriging estimate of the fraction of the total area covered
by the low-conductivity material equals the declustered
global mean of the original indicator data, resulting from
the raw data. In such cases, c is set to a value of the kriged
indicator field which allows one to recover a reconstruction
that honors the empirical relative volumetric fractions of the
two materials.

A2. Support Vector Machines

[31] The Support Vector Machine (SVM) is a tool from
Statistical Learning Theory that has been recently used by
Tartakovsky and Wohlberg [2004] and Wohlberg et al.
[2006] to solve the problem of facies delineation posed in
section 4. (See also Kanevski and Maignan [2004] for other
uses of SVMs in geosciences.) The theory and the imple-
mentation of SVMs is described in great detail by Wohlberg
et al. [2006].
[32] In essence, the SVM solves the problem of facies

delineation by minimizing the quadratic functional

max
g

XN
i¼1

gi �
1

2

XN
i¼1

XN
j¼1

gigjJiJjK xi; xj
� �( )

; ðA1Þ

where J(x) is a map of the indicator function I(x) defined as
J(x) = 1 for I(x) = 1 and J(x) = �1 for I(x) = 0, and K(xi, xj)
is a given Mercer kernel, subject to the constraints

0 � gi � C and
XN
i¼1

giJi ¼ 0: ðA2Þ

This optimization problem has a well defined global
minimum that is influenced by the choice of the fitting
parameter C. The resulting facies boundary is given by

J xð Þ ¼ sgn
XN
i¼1

g?i JiK x; xið Þ þ b?

 !
; ðA3Þ

where maxg
? is the solution of the optimization (A1), and b?

is determined as described by Wohlberg et al. [2006].

Figure 3. Example 1: boundary estimation errors with the
indicator kriging (IK) approach, the nearest-neighbor
classification (NNC), and support vector machines (SVM).

Figure 4. Example 2: boundary estimation errors with the
indicator kriging (IK) approach, the nearest-neighbor
classification (NNC), and support vector machines (SVM).
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[33] In the simulations reported here, we have used the
exponential kernel K(xi, xj) = exp [�jjxi � xj jj/(2s2) ]. To
select the optimal values of parameters C and s, we have
used the leave-one-out approach [Wohlberg et al., 2006] on
the grid (C,s) 2 {10k/2jk 2 {�2, �1, 0, 1, 2}} � {10k/4jk 2
{�2, �1, 0, 1, 2, 3, 4}}.
[34] It is worth emphasizing a technical detail which was

not mentioned in [Wohlberg et al., 2006]; we only became
aware of this detail after implementing our own SVM
software for the experiments described here, since it was
previously obscured by our use of a publicly available SVM
library. While we described the standard SVM formulation
with bias term, those results, as well as the results presented
here, are computed using the zero-bias SVM formulation
[Vogt, 2002; Huang and Kecman, 2004], in which optimi-
zation (A1) has only the single constraint 0 � gi � C, and
the facies boundary is given by

J xð Þ ¼ sgn
XN
i¼1

g?i JiK x; xið Þ
 !

: ðA4Þ

For reasons which we are unable to explain, we have found
the SVM with bias term to have a performance which is
inferior in this application, to the extent that it is significantly
outperformed by NNC and slightly outperformed by IK.
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